China Standard Hardened Hard Chrome Plated Piston Shaft for Hydraulic Cylinder Shaft near me factory

Item Description

1,Item Description

Specialist manufacturer of honed tube & chrome rod/bar/shaft, launched in 2004, 1 of greatest manufacturer in China.
The numerous kinds of chrome bars in our shares are 
Difficult chrome bars/ Piston rod in CK45, 20MnV6, 42CrMo
Induction hardened chromed bars / piston rods in CK45, 20MnV6, 42CrMo
Hollow chrome rods in CK45, 20MnV6, 42CrMo
Nickel + chrome plating bars

2,Products Present

As 1 of the greatest honed tube piston rod makers in China, we equipped with sophisticated creation facilities and inspection services for honed pipe manufacturing and inspection. Under manufacturing equipment for steel honed tubing and chrome plated difficult bar

three,Testing & Inspection


4,Packing


five,Organization Present

Major in Honed tube, Chrome rod, Cylinder components, fifteen+ years’ encounter. Factory was set up underneath contemporary management method and systems in 2003. It handles an region of forty,000 sq. meters, all processing management contain cold-drawn, warmth treatment, honing, peeling, grinding, sharpening. There ‘re sixty+ sets of superior gear and 70+ skilled technological workers, once-a-year output in excess of 20,000 tons.

6,Our Solutions

<Could make product for customer according to customer samples or drawings
<Submit samples with official inspection reports including  material report, mechanical property report and dimensional report
<Can provide the third party inspection report
<Could provide at least 1 year's high quality guarantee after consumer gets the products
<We could supply storage service for customer if required.

 
   

 
 
   

 
   

Item Hard Chromed Rod Induction Hardened Chromed Nickel and Chrome Plating Bars
Steel Grade C45E (EN 10083) C45E (EN 10083) C45E,20MnV6/38MnVS6
Tolerance ISOf7 ISOf7 ISOf7
Roundness Diameter tolerance / 2  diameter tolerance / 2  diameter tolerance / 2
Standard Length -for Ø ≤ 60 mm: 5600 -6200mm
-for Ø≥60 mm: 5800 -7200mm 
Upon request: special lengths on all diameters
– for Ø ≤ 60 mm: 5600 – 6200 mm
– for Ø ≥ 60 mm: 5800 – 7200mm 
Upon request: special lengths on all diameters
Up to 6000 mm 

Upon request: special lengths on all diameters

Surface Roughness Ra max. 0.20 µm 
(statistic average: 0.05-0.15 µm)
Ra max. 0.20 µm 
(statistic average: 0.05- 0.15 µm)
Ra max. 0.20 µm (statistic average: 0.05-0.15 µm)
Chrome Layer Thickness min. 900 HV (0.1)
 
min. 900 HV (0.1)  min. 25 µm
Straightness ≤ Ø16 mm: max. 0.3 mm: 1000 mm
> Ø16 mm: max. 0.2 mm: 1000 mm
≤ Ø16 mm: max. 0.3 mm: 1000 mm
> Ø16 mm: max. 0.2 mm: 1000 mm
max.0.20 mm/1000 mm
Item Hard Chromed Rod Induction Hardened Chromed Nickel and Chrome Plating Bars
Steel Grade C45E (EN 10083) C45E (EN 10083) C45E,20MnV6/38MnVS6
Tolerance ISOf7 ISOf7 ISOf7
Roundness Diameter tolerance / 2  diameter tolerance / 2  diameter tolerance / 2
Standard Length -for Ø ≤ 60 mm: 5600 -6200mm
-for Ø≥60 mm: 5800 -7200mm 
Upon request: special lengths on all diameters
– for Ø ≤ 60 mm: 5600 – 6200 mm
– for Ø ≥ 60 mm: 5800 – 7200mm 
Upon request: special lengths on all diameters
Up to 6000 mm 

Upon request: special lengths on all diameters

Surface Roughness Ra max. 0.20 µm 
(statistic average: 0.05-0.15 µm)
Ra max. 0.20 µm 
(statistic average: 0.05- 0.15 µm)
Ra max. 0.20 µm (statistic average: 0.05-0.15 µm)
Chrome Layer Thickness min. 900 HV (0.1)
 
min. 900 HV (0.1)  min. 25 µm
Straightness ≤ Ø16 mm: max. 0.3 mm: 1000 mm
> Ø16 mm: max. 0.2 mm: 1000 mm
≤ Ø16 mm: max. 0.3 mm: 1000 mm
> Ø16 mm: max. 0.2 mm: 1000 mm
max.0.20 mm/1000 mm

How to Identify a Faulty Drive Shaft

The most common problems associated with automotive driveshafts include clicking and rubbing noises. While driving, the noise from the driver’s seat is often noticeable. An experienced auto mechanic can easily identify whether the sound is coming from both sides or from one side. If you notice any of these signs, it’s time to send your car in for a proper diagnosis. Here’s a guide to determining if your car’s driveshaft is faulty:
air-compressor

Symptoms of Driveshaft Failure

If you’re having trouble turning your car, it’s time to check your vehicle’s driveshaft. A bad driveshaft can limit the overall control of your car, and you should fix it as soon as possible to avoid further problems. Other symptoms of a propshaft failure include strange noises from under the vehicle and difficulty shifting gears. Squeaking from under the vehicle is another sign of a faulty driveshaft.
If your driveshaft fails, your car will stop. Although the engine will still run, the wheels will not turn. You may hear strange noises from under the vehicle, but this is a rare symptom of a propshaft failure. However, you will have plenty of time to fix the problem. If you don’t hear any noise, the problem is not affecting your vehicle’s ability to move.
The most obvious signs of a driveshaft failure are dull sounds, squeaks or vibrations. If the drive shaft is unbalanced, it is likely to damage the transmission. It will require a trailer to remove it from your vehicle. Apart from that, it can also affect your car’s performance and require repairs. So if you hear these signs in your car, be sure to have it checked by a mechanic right away.

Drive shaft assembly

When designing a propshaft, the design should be based on the torque required to drive the vehicle. When this torque is too high, it can cause irreversible failure of the drive shaft. Therefore, a good drive shaft design should have a long service life. Here are some tips to help you design a good driveshaft. Some of the main components of the driveshaft are listed below.
Snap Ring: The snap ring is a removable part that secures the bearing cup assembly in the yoke cross hole. It also has a groove for locating the snap ring. Spline: A spline is a patented tubular machined element with a series of ridges that fit into the grooves of the mating piece. The bearing cup assembly consists of a shaft and end fittings.
U-joint: U-joint is required due to the angular displacement between the T-shaped housing and the pinion. This angle is especially large in raised 4x4s. The design of the U-joint must guarantee a constant rotational speed. Proper driveshaft design must account for the difference in angular velocity between the shafts. The T-bracket and output shaft are attached to the bearing caps at both ends.
air-compressor

U-joint

Your vehicle has a set of U-joints on the driveshaft. If your vehicle needs to be replaced, you can do it yourself. You will need a hammer, ratchet and socket. In order to remove the U-joint, you must first remove the bearing cup. In some cases you will need to use a hammer to remove the bearing cup, you should be careful as you don’t want to damage the drive shaft. If you cannot remove the bearing cup, you can also use a vise to press it out.
There are two types of U-joints. One is held by a yoke and the other is held by a c-clamp. A full ring is safer and ideal for vehicles that are often used off-road. In some cases, a full circle can be used to repair a c-clamp u-joint.
In addition to excessive torque, extreme loads and improper lubrication are common causes of U-joint failure. The U-joint on the driveshaft can also be damaged if the engine is modified. If you are driving a vehicle with a heavily modified engine, it is not enough to replace the OE U-joint. In this case, it is important to take the time to properly lubricate these components as needed to keep them functional.

tube yoke

QU40866 Tube Yoke is a common replacement for damaged or damaged driveshaft tubes. They are desirably made of a metallic material, such as an aluminum alloy, and include a hollow portion with a lug structure at one end. Tube yokes can be manufactured using a variety of methods, including casting and forging. A common method involves drawing solid elements and machining them into the final shape. The resulting components are less expensive to produce, especially when compared to other forms.
The tube fork has a connection point to the driveshaft tube. The lug structure provides attachment points for the gimbal. Typically, the driveshaft tube is 5 inches in diameter and the lug structure is 4 inches in diameter. The lug structure also serves as a mounting point for the drive shaft. Once installed, Tube Yoke is easy to maintain. There are two types of lug structures: one is forged tube yoke and the other is welded.
Heavy-duty series drive shafts use bearing plates to secure the yoke to the U-joint. All other dimensions are secured with external snap rings. Yokes are usually machined to accept U-bolts. For some applications, grease fittings are used. This attachment is more suitable for off-road vehicles and performance vehicles.
air-compressor

end yoke

The end yoke of the drive shaft is an integral part of the drive train. Choosing a high-quality end yoke will help ensure long-term operation and prevent premature failure. Pat’s Driveline offers a complete line of automotive end yokes for power take-offs, differentials and auxiliary equipment. They can also measure your existing parts and provide you with high quality replacements.
A U-bolt is an industrial fastener with threaded legs. When used on a driveshaft, it provides greater stability in unstable terrain. You can purchase a U-bolt kit to secure the pinion carrier to the drive shaft. U-bolts also come with lock washers and nuts. Performance cars and off-road vehicles often use this type of attachment. But before you install it, you have to make sure the yoke is machined to accept it.
End yokes can be made of aluminum or steel and are designed to provide strength. It also offers special bolt styles for various applications. CZPT’s drivetrain is also stocked with a full line of automotive flange yokes. The company also produces custom flanged yokes for many popular brands. Since the company has a comprehensive line of replacement flange yokes, it can help you transform your drivetrain from non-serviceable to serviceable.

bushing

The first step in repairing or replacing an automotive driveshaft is to replace worn or damaged bushings. These bushings are located inside the drive shaft to provide a smooth, safe ride. The shaft rotates in a rubber sleeve. If a bushing needs to be replaced, you should first check the manual for recommendations. Some of these components may also need to be replaced, such as the clutch or swingarm.